

OpenMRS (latest stable release: version 1.8.3)

URL http://openmrs.org/

Description

The Open Medical Record System (OpenMRS®) is an
open source medical record platform for developing
countries. It is a common platform upon which medical
informatics efforts can be built. The system is based on
a conceptual database and can be customized for
different uses. It allows implementers to design a
customized medical records system with little or no
programming skills. OpenMRS features include a
Central concept dictionary, Modular architecture and
Standards support.

Licensing

OpenMRS is distributed under the OpenMRS Public
License 1.1. This license is based on the Mozilla public
license version 1.1, but contains certain terms and
conditions that differ.
(See section 6.3 of
https://wiki.openmrs.org/display/RES/OpenMRS+Public
+License+1.1 for these differences)

Cost Free

Support

OpenMRS volunteers, core developers and
implementers maintain developer and implementer
mailing lists. OpenMRS has its own answer support
system. The core team also hosts weekly calls to share
knowledge. However, free support is not guaranteed
for implementations. Alternatively, they
(implementers) may open tickets and ask for guidance.

Community
A large and active community of volunteers,
professionals and academics. Also maintains mailing
lists and a wiki.

Community URL http://openmrs.org/

http://openmrs.org/
http://openmrs.org/

Source code
availability

Source code is freely available

Active
Development

Yes, by OpenMRS core developers employed by the
Regenstrief institute and PIH, Boston. Also supported
by a large number of volunteer developers.

Language
Support

Documentation is available only in the English
language. However the product provides Localization /
internationalization (currently supports English US,
English UK, Italian, Spanish, French and Portuguese).
OpenMRS also supports the possibility to extend to
other languages with full UTF-8 support.

Operating
Systems

OpenMRS is cross-platform, and written in Java. It uses
a Spring/Hibernate/maven stack. There is no specific
preferred OS. Developers use Windows, Linux and Mac
OSX.

Database
Systems

Version 1.8.2 only supports MySQL. However version
1.9 (yet to be released) includes changes to support
Postgresql and Sql Server.

Interoperability

OpenMRS can be accessed via both REST and SOAP
web services. The recommended (and only supported
method) is via the Webservices.rest Module. The
PIX/PDQ module supports basic PIX/PDQ transactions.
OpenMRS also provides a SMART container for SMART
applications.

Current
Installations

OpenMRS implementations exist in South Africa,
Kenya, Rwanda, Lesotho, Zimbabwe, Mozambique,
Uganda, Tanzania, Haiti, India, China, United States,
Pakistan, Philippines, Sri Lanka, Indonesia and many
other countries. A detailed list of implementation sites,
contact persons and approximate sizes can be seen at
(http://openmrs.org/about/locations/)

Performance
Metrics

Matching
algorithms

The OpenMRS Patient Matching module is built on the
Felligi-Sunter probabilistic matching algorithm.

Requirements

S
co

p
e

P
ri

or
it

y

F
u

lly
 C

om
p

li
es

P
ar

ti
al

ly

C
om

p
li

es

D
oe

s
n

ot

C
om

p
ly

Notes + Further Information

1 Shared Health Records

Functional Requirements

1.1 Information Request

1.1.1 System must retrieve an appropriate record in response to a
request.

Y 1

1.1.2 System must validate the request location
N //Does not apply, removed. To be handled by

the Interoperability layer.

1.1.2 System must respond to time based and cohort queries

Y- but I believe we
agreed this is part of
the messaging NOT
the SHR

3

We will be supporting the queries defined here.
We will not be supporting Cohort Based queries
for the Phase 1 Project Implementation. An
Example Use Case of a cohort
based query is : From the POC
perspective, if we have a
scheduling solution in place for
ANC visits, we could make batch
requests to pull down the latest
encounter data from the SHR some
time before the actual visit.

1.1.3 System must identify newly updated information
Y 1 New information will be returned based on

messaging based requests

1.1.4 System must have security rules to validate data request

N- we also
decided
there is
NO UI so
this is not
applicable

1

From the interoperability Layer. For now, we’ll
be supporting Basic Authentication or similar
between the interoperability layer and the SHR.

http://jira.jembi.org/wiki/display/RHEAPILOT/RHEA+Published+API+Specifications

1.1.5 System must enforce different security requirements on
different data

N- see above 2

OpenMRS persists data as Observations. We
cannot enforce restrictions for only a given set
of data.
Any user who has permissions to view
observations may view all observations.

1.1.6 System must accommodate externally defined roles, which
are equivalent to those in the Provider Registry.

N 2

Basic Role Based Security will be supported
which OpenMRS currently provides.

1.1.7 System must maintain an audit log of all information requests
whether they are completed or not

Y 2

The Access Logging module (requires 1.4.0)
will allow access logging for Patients and
Encounters. However, there is no provision for
uncompleted requests.

We will just log all communications with the
interoperbaility layer.

1.1.8 System must provide an acknowledgment for each
information request. The acknowledgement may be either a
success or error message

Y 1

Refer to Transaction specifications document for
the responses we have identified.

1.1.9 System must identify when a subset of the available
information is returned due to insufficient credentials etc.

N- see above 3

OpenMRS favors to reject the entire request in
such an event*. Therefore. No such
identification is made.

1.1.10System must retrieve information in specified aggregates or
domain specific subsets

N- not
needed to
support our
use case

3

For the Phase 1 Implementation, we will only be
supporting the queries defined in the transaction
specification which will be initiated from the
OpenMRS POC. Any additional reporting is out
of scope.

1.1.11 System must export either the full set of data for a particular
patient, or a predefined subset based on user triggered
predefined subsets.

N 3

We will support all queries defined in the
transaction specification document.

1.2 Information Storage

1.2.1 System must validate that patient, provider and location is
valid.

N
//Does not apply, removed. To be handled by the
interoperability layer

1.2.1 System must validate the content is using the appropriate
vocabulary.

N
//Does not apply, removed. To be handled by the
TS through the interoperability layer.

1.2.1 System must be able to perform saves in an asynchronous
fashion. (via usb or a queue).

Yes! 2

The USB use case still needs to be defined
further.

1.2.2 System must retrieve both persistent (e.g. allergies) person and
encounter data (based on security restrictions)

Y- this will
have a lot
to do with
our data
model

2

Again, we will support the defined queries in the
transaction specification.

1.2.3 Successful transactions must be acknowledged to originating
system

Y 1

Refer to Transaction specifications document for
the responses we have identified.

1.2.5 System must store unsuccessful transaction data along with
reasons for failure

y- but could be
in an error
queue

1

The Access Log module is the closest contender
to support this functionality. However neither
this module records unsuccessful transaction
data.

1.2.6 In the event of an unsuccessful transaction, the originating
system must be notified

Y 1

1.2.7 System must be able to correct/address any unsuccessful
transactions.

y- but this
will likely
be
MANUAL
at first

1

1.2.8 System must be able to aggregate several episodes together
(care composition)

y- again
goes to
data model

3

Although we can support this, we do not have
specific use cases for our Phase 1
Implementation, besides returning multiple
encounters for our messaging requests.

1.2.9 System must be able to create trigger events for clinical
decision support or alerts

Y- likely
only 1 or
2- I will
tell you
what they
are
specifically
soon

1

OpenMRS uses Arden and the DSS module to
provide clinical decision support.

1.2.10 System must be able to support all data types

y- although
lets discuss
photos- I
think out
of scope-
but we
need to
make sure
we don’t
build
something
that does
not let us
add this
later

1

OpenMRS supports all data types from numbers
to Strings to concepts and text / image files.

1.2.11 System must process asynchronous requests in the order that
they were created, not the order which they were received.

y- part of
the interop
layer I
believe

We agreed at the project meeting to process
messages in the SHR based on the Encounter
Date and not on the Message Time-Stamp in
which it was received.

1.3 Interface / Communication

1.3.1 System will not use the end user interface Y

1.3.2 System data must be available for reporting

Y 1

Can be done using the Reporting module,
Patient Summary module or the Clinical
summary module

1.3 3 System must record and version all data updates

Y 2

OpenMRS lets users log data changes using logs
or the Access Log module. In the event of
updating data, OpenMRS retires the old object
and introduces a new one with the modified
data, thus ‘versioning’ the data.

1.3.4 System must record the author of each data change
Y 1

1.3.5 In the event of a data change, the system must record a user
comment on the reason for the change

Y 1

1.4 Business Rules
1.4.1 System must define and implement business rules that are y- to be 1 As stated above, this can be done using Arden

triggered by the entry of specific data
defined 1-2
specific
rules

and the DSS module

1.5 Non-Functional Requirements

1.5.1 System must have a data recovery and back-up solution

Y 1

In addition to the traditional MySQL database
backup, OpenMRS also provides the Database
backup module, which allows users to include or
exclude selected data from the backup process.

1.6.2 System must allow for real time updates
Y 1

1.6.3 System must provide sufficient support documentation in
English

Y 1 Extensive wiki documentation available

1.6.4 System must be easily scalable to (a minimum) of double the
current Patient count in Rwanda

Y 1

1.6.5 System must provide user restricted security to the SHR
configuration

Y 1

1.6.6 System must ensure maximum possible uptime
Y 1

1.6.7 System must be able to support an x number of concurrent
users

NA- this is
immaterial
as the user
only
interacts
with the
POC
system

1

//In the worst case scenario, how much
concurrent users can we expect?

1.6.8 SHR database must support database change management so
that database modifications can be made

Y

OpenMRS uses liquibase to support database
change management

Priority

1. High Priority – must be done as part of RHEA project

2. Medium

3. Low

